Learning Bayesian Belief Networks with Neural Network Estimators
نویسندگان
چکیده
In this paper we propose a method for learning Bayesian belief networks from data. The method uses artificial neural networks as probability estimators, thus avoiding the need for making prior assumptions on the nature of the probability distributions governing the relationships among the participating variables. This new method has the potential for being applied to domains containing both discrete and continuous variables arbitrarily distributed. We compare the learning performance of this new method with the performance of the method proposed by Cooper and Herskovits in [7]. The experimental results show that, although the learning scheme based on the use of ANN estimators is slower, the learning accuracy of the two methods is comparable. Category: Algorithms and Architectures.
منابع مشابه
A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملLearning Bayesian belief networks with neural network estimatorsy
Stefano Monti Intelligent Systems Program University of Pittsburgh 901M CL, Pittsburgh, PA { 15260 [email protected] Gregory F. Cooper ; Center for Biomedical Informatics University of Pittsburgh 8084 Forbes Tower, Pittsburgh, PA { 15261 [email protected] Technical Report ISSP-96-02 April 1996 (Revised January '97) Intelligent Systems Program University of Pittsburgh 901 CL, Pittsburgh, PA 15...
متن کاملZhuSuan: A Library for Bayesian Deep Learning
In this paper we introduce ZhuSuan, a python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and deep learning. ZhuSuan is built upon Tensorflow. Unlike existing deep learning libraries, which are mainly designed for deterministic neural networks and supervised tasks, ZhuSuan is featured for its deep root into Bayesia...
متن کاملOptimisation of neural state variables estimators of two-mass drive system using the Bayesian regularization method
The paper deals with the application of neural networks for state variables estimation of the electrical drive system with an elastic joint. The torsional vibration suppression of such drive system is achieved by the application of a special control structure with a state-space controller and additional feedbacks from mechanical state variables. Signals of the torsional torque and the load-mach...
متن کامل